Slow-light plasmonic metamaterial based on dressed-state analog of electromagnetically induced transparency

SØREN RAZA* AND SERGEY I. BOZHEVOLNYI
Department of Technology and Innovation, University of Southern Denmark, Niels Bohrs Allé 1, DK-5230 Odense M, Denmark
*Corresponding author: sraz@iti.sdu.dk
Received 27 May 2015; revised 28 July 2015; accepted 11 August 2015; posted 19 August 2015 (Doc. ID 241822); published 8 September 2015

We consider a simple configuration for realizing one-dimensional slow-light metamaterials with large bandwidth-delay products using stub-shaped Fabry–Perot resonators as building blocks. Each meta-atom gives rise to large group indices because of a classical analog of the dressed-state picture of electromagnetically induced transparency. By connecting up to eight meta-atoms, we find bandwidth-delay products over unity and group indices approaching 100. Our approach is quite general and can be applied to any type of Fabry–Perot resonators and tuned to different operating wavelengths. © 2015 Optical Society of America

OCIS codes: (240.6680) Surface plasmons; (160.3918) Metamaterials.

http://dx.doi.org/10.1364/OL.40.004253

Electromagnetically induced transparency (EIT) occurs in atomic systems because of the destructive quantum interference of coupled atomic transitions [1,2]. The EIT phenomenon renders an otherwise optically opaque medium transparent in a narrow spectral region, which, because of the Kramers–Kronig relations, is accompanied by strong material dispersion, resulting in a significant reduction of the speed of light [3], or even stopping light [4,5]. For all-optical processing systems, controlling the speed of light is an essential ability, especially for designing optical storage systems, such as optical buffers [6]. Unfortunately, atomic EIT often requires extreme environmental conditions, such as cryogenic temperatures, which are not suitable for chip-based systems. In contrast, classical analogs of EIT in metal-based plasmonic structures [7–12] pave the way for exploiting the reduction of the speed of light on the nanoscale. Such extreme control of light is possible because of the coupling of light to surface plasmons propagating at metal-dielectric interfaces, thereby squeezing the light beyond the diffraction limit [13].

In the quantum mechanical description of atomic EIT, two theoretical interpretations based on either the bare states or the dressed states are available. While both are equivalent in the quantum description, their classical analogs differ significantly. In particular, the classical EIT analog of the bare states interprets the use of radiant and subradiant plasmonic modes [7–9,14], while the dressed-state picture is based on detuned radiant resonators [11,12,15]. The dressed-state analog has recently received substantial attention, especially by utilizing detuned resonators coupled to metal-insulator-metal (MIM) waveguides [12,16–20]. The gap surface plasmon mode supported by the MIM waveguide offers a good compromise between mode confinement and propagation length, making it an ideal candidate for slow-light devices.

One of the parameters for characterizing a slow-light device is the minimal group velocity \(v_g\) or, equivalently, the largest group index \(n_g = c/v_g\), which can be attained. However, a large group index is only practical if available in a wide-frequency bandwidth \(\Delta f\). Hence, an important figure of merit for slow-light applications is the bandwidth-delay product \(\tau \Delta f\), where \(\tau = v_g/\Delta f\) is the delay experienced by an optical pulse over a propagation length \(L\) [21]. To ensure the delay of a pulse of duration \(\sim \Delta f^{-1}\), we must have \(\tau \Delta f \gtrsim 1\). In this Letter, we present a simple configuration for generating over-unity bandwidth-delay products by creating one-dimensional metamaterials using two detuned Fabry–Perot resonators as our meta-atom. We study detuned stub resonators aperture coupled to a MIM waveguide to realize the dressed-state analog of atomic EIT with accompanying large group index. By joining up to eight meta-atoms, we show the expected convergence of both the real and imaginary parts of the metamaterial effective refractive index. We find a group index approaching 100 and bandwidth-delay product of 1.2 with a reasonable transmittance of 10%.

We consider a silver-glass-silver waveguide, where the refractive index of glass is 1.45, while the dielectric function for silver is interpolated from tabulated values [22]. The width of the waveguide is fixed to \(w = 100\) nm throughout this study. Using a port excitation scheme in a commercial finite-element frequency-domain solver (COMSOL Multiphysics 5.0), we launch the gap surface plasmon mode of the MIM waveguide and detect the transmittance at an output port positioned after the stub resonators. Before discussing the system consisting of two detuned stub resonators, we first optimize the case of a single stub resonator of length \(L_1\), which is coupled through an aperture of width \(d\) and gap \(g\) to the MIM waveguide, as
illustrated in Fig. 1(a). In Fig. 1(b), we vary the length of the stub for fixed aperture dimensions of $g = d = 50$ nm. For $L_1 < 500$ nm, we notice a single dip in the transmittance spectra because of the excitation of an anti-symmetric Fabry–Perot mode supported by the stub, which exhibits a standing wave pattern with two antinodes in the magnetic field (not depicted). The transmittance dip is because of the destructive interference of the bus MIM wave and the reflected wave from the stub resonator. For $L_1 > 500$ nm, an additional transmittance dip at shorter wavelength shows up, since the stub resonator now also supports a symmetric Fabry–Perot mode with three antinodes. For increasing stub length, both Fabry–Perot modes redshift and broaden. By varying the stub length, we can tune the resonance of a given Fabry–Perot mode to a desired wavelength. In the subsequent analysis, we choose $L_1 = 500$ nm, since both modes are then present in the considered wavelength range. In Figs. 1(c) and 1(d), we study the effect of the aperture width d and gap g, respectively. As an important feature, we see that decreasing the aperture width provides a narrower transmittance dip, since the reflection from the stub surface next to the aperture increases. Put in other words, the finesse of the stub-shaped Fabry–Perot resonator increases with decreasing aperture width. As shown in earlier studies [12], a spectrally narrow transmittance dip is beneficial, since it produces a strong EIT effect with resulting large group index. However, we find that for too small values of d, the transmittance minima begin to increase (i.e., the transmittance does not reach zero at the resonance wavelengths) because of the decrease in coupling between the MIM waveguide and the stub resonator. Hence, a trade-off between the transmittance minimum and the spectral width of the transmittance dip (i.e., quality factor) exists, which can be controlled through the aperture width. Finally, as shown in Fig. 1(d), increasing the aperture gap (for a fixed aperture width) only produces a redshift of the transmittance dip (and no significant change in the spectral width) as a consequence of additional phase accumulation in the aperture, which slightly modifies the resonance condition of the aperture-coupled stub system. Based on this analysis, we keep the same value for the aperture gap (i.e., $g = 50$ nm), but decrease the width to $d = 30$ nm for a narrow transmittance dip which still reaches zero at the Fabry–Perot resonance wavelengths.

Next, we add an additional stub of length L_2 on the opposite side of the waveguide, as illustrated in Fig. 2(a). The two apertures, which couple to each of the stub resonators, have the same dimensions. We will later consider the double-stub system as our meta-atom (with unit size a) when building our one-dimensional slow-light metamaterial. For now, we study a single cell. To generate the EIT effect based on the dressed-state interpretation, we need two detuned resonators [11,12], which can be achieved by simply varying the length of the second stub resonator, while keeping the widths of the two stubs identical. (The opposite approach will also give rise to detuned resona-

Fig. 1. (a) Schematic illustration of a silver-glass-silver waveguide aperture coupled (with width d and gap g) to a single stub-shaped Fabry–Perot resonator of length L_1. Transmittance through waveguide (color plot) as a function of wavelength and (b) stub length L_1, (c) aperture width d, and (d) aperture gap g. The following parameters are used, unless they are varied in the plot: $w = 100$ nm, $d = g = 50$ nm, and $L_1 = 500$ nm.

Fig. 2. (a) Schematic illustration of a silver-glass-silver waveguide aperture coupled (with width d and gap g) to two stub-shaped Fabry–Perot resonators of lengths L_1 and L_2. The meta-atom cell size a is also shown. (b) Transmittance through the waveguide (color plot) as a function of wavelength and second stub length L_2. The fixed parameters are $w = 100$ nm, $d = g = 50$ nm, and $L_1 = 500$ nm. (c)–(e) Out-of-plane magnetic field component at the resonance wavelength of the short stub, the wavelength of maximum transmittance in the EIT-like window, and the resonance wavelength of the long stub, respectively. The length of the second stub is $L_2 = 550$ nm.
tors.) Figure 2(b) shows transmittance spectra of the double-stub system for L_2 values which are slightly larger than L_1 ($L_1 = 500$ nm). As the difference between the lengths of the two stubs $L_2 - L_1$ increases, the detuning of the two resonators increases, creating an EIT window in the spectral regions of the transmittance dips. We note that the long-wavelength transmittance dip requires a larger detuning to create the EIT window, since the dip is spectrally wider. In fact, to have a sufficiently large transmittance maximum in the EIT window ($\geq 80\%$), we find that L_2 should be at least 550 nm. In Figs. 2(c)–2(e), we show the magnetic field profile of the EIT phenomenon for three different wavelengths in the case of $L_2 = 550$ nm. For wavelengths that are shorter [Fig. 2(c)] and longer [Fig. 2(e)] than the EIT window, the two stub resonators are excited independently, producing a weak transmission through the waveguide in both cases. At the transmittance maximum in the EIT window [Fig. 2(d)], both stub resonators are excited simultaneously, but with opposite phase, thereby canceling the destructive interference normally created by the individual stubs. A similar picture is seen for the low-wavelength EIT window (with three antinodes in the magnetic field profile of each stub instead of two), showing that the EIT effect created because of the detuned resonators is independent of the stub mode.

In Fig. 3, we focus on the long-wavelength EIT window [Fig. 3(a)] and determine the effective refractive index n_{eff} [Figs. 3(b) and 3(c)], along with the group index n_g [Fig. 3(d)]. The real part of the effective index is calculated from the phase difference of the magnetic fields $\Delta \phi$ at positions before and after the meta-atoms as $\text{Re}(n_{\text{eff}}) = \Delta \phi / (N \Delta k_0)$, where N is the number of meta-atoms and $k_0 = 2\pi c / \lambda$ is the vacuum wave vector [12,23,24]. The imaginary part of the effective index is determined from the transmittance T as $\text{Im}(n_{\text{eff}}) = -\ln(T) / (2N \Delta k_0)$, assuming an exponential decay of the power of the fields. In the calculation of the complex effective refractive index, we also assume that the reflection of the gap surface plasmon, when impinging on the metamaterial, is negligible. As verified in Fig. 3(a), the reflectance is small in the transparency window, justifying our approach. Finally, the group index is given as $n_g = \text{Re}(n_{\text{eff}}) - \lambda \frac{\text{d}[\text{Re}(n_{\text{eff}})]}{\text{d}n}$ in the spectral regions of normal dispersion $\frac{\text{d}[\text{Re}(n_{\text{eff}})]}{\text{d}n} < 0$. To avoid large unphysical variations in the group index, we perform a linear fit of the real part of the effective index in the spectral regions of normal dispersion [shown as dashed lines in Fig. 3(b)]. Figure 3 shows that a single double-stub meta-atom produces a group index larger than 60 in a bandwidth of approximately 50 nm [determined as the full-width at half-maximum (FWHM) of the transmittance peak], with a transmittance maximum close to 80%.

The metamaterial description is only applicable for meta-atoms significantly smaller than the operating wavelength, i.e., $a \ll \lambda$, setting an upper limit to our cell size. Simultaneously, too small cell sizes give rise to undesired coupling between the meta-atoms. Despite these two limits, the cell size is still quite tunable, and we find that a cell size of $a = 200$ nm provides a good trade-off. Figures 3(b) and 3(c) show that the effective index quickly converges with an increasing number of cells, supporting the metamaterial interpretation. The oscillations in the effective index observed for one and two cells are, to some extent, expected, since the homogenization of the electro-magnetic fields cannot be properly performed for a metamaterial made of only a few cells in the direction of light propagation, especially in the presence of the intercell interaction. In Fig. 3(d), we see that the group index increases with the number of cells, reaching close to a two-order decrease in the speed of light with only eight cells. However, because of the increase in propagation length $l = N a$, the FWHM and maximum transmittance decrease. As discussed earlier, an important figure of merit for any slow-light device is the bandwidth-delay product, which we estimate using the relation $\tau \Delta f = \Delta \lambda \left[n_g(\lambda_T) - n_{\text{MIM}}(\lambda_T) \right] / (2\pi^2)$. Here, $\Delta \lambda$ is the FWHM of the transmittance peak, while the group indices of the metamaterial n_g and the MIM waveguide n_{MIM} are evaluated at the wavelength of maximum transmittance λ_T. For a single meta-atom, we find the bandwidth-delay product to be 0.26, which is quite large considering the short propagation length. Joining additional meta-atoms significantly increases the bandwidth-delay product to 0.36, 0.68, and 1.2 for 2, 4, and 8 cells, respectively. Despite the decrease in FWHM of the transmittance peak, the increase in propagation length and in group index results in an overall increase in the bandwidth-delay product. The large values for the bandwidth-delay product come at the expense of decreasing maximum transmittance. However, even for eight cells with a huge bandwidth-delay product of 1.2, the maximum transmittance is still 10%. Adding more cells.
increases the bandwidth-delay product even further, but the transmittance level becomes impractical. Given a certain tolerance level for the maximum transmittance, say 10%, the maximum number of joined meta-atoms can actually be estimated from the imaginary part of the effective index of a single meta-atom [Fig. 3(c)] as \(N = -\ln(T)/[2 \text{Im}(n_{eff})\lambda k_0] \). This is possible because of the fast convergence of the effective index in the EIT window with an increasing number of cells.

An additional aspect of light propagation in the proposed slow-light metamaterials is the possible distortion of incident pulses. As observed in the acoustic metamaterial in [24], a slow-light metamaterial with a negative GVD medium, provides a solution to pulse distortion. However, even in the case of zero dispersion, the GVD maximum number of joined meta-atoms can actually be estimated from the imaginary part of the effective index of a single meta-atom [Fig. 3(c)] as \(N = -\ln(T)/[2 \text{Im}(n_{eff})\lambda k_0] \). This is possible because of the fast convergence of the effective index in the EIT window with an increasing number of cells.

While we only showed the long-wavelength EIT window in Fig. 3, we have also performed simulations on the short-wavelength EIT window of Fig. 2. Using the same approach for creating the metamaterial, we find comparable values for the group index and bandwidth-delay product, providing support that our slow-light metamaterial can be made to operate using different Fabry–Perot modes at different wavelengths. In fact, the detuned resonators of the individual meta-atoms can be achieved with other Fabry–Perot resonators than the aperture-coupled stub-shaped considered here, such as nanodisk cavities [18] or T-shaped resonators [25]. Considering the practical realization of the proposed metamaterial design, the operation principle based on detuned resonators is advantageous, since fabrication imperfections such as roughness are then expected to be of minor importance, as long as the detuning is achieved. Given characteristics similar to those of gap surface plasmons, we anticipate that the metamaterial can be realized using channel plasmon polaritons, either in trench waveguides, as already shown for a single meta-atom in [19], or in groove waveguides.

In summary, we have considered a simple configuration for designing slow-light metamaterials with large bandwidth-delay products based on meta-atoms exhibiting EIT. The EIT effect is achieved using detuned resonators to mimic the atomic dressed-state picture. By adjusting the detuning, the metamaterial can be tuned to different operating wavelengths.

Funding. Det Frie Forskningsråd (Danish Council for Independent Research) (12-124690); European Research Council (ERC) (341054).

REFERENCES